Rabitə və İnformasiya Texnologiyaları Nazirliyinin elektron xəbər xidməti

Google сделал рекордно точную систему машинного перевода на основе нейросетей


Специалисты по искусственному интеллекту из Google представили новую систему машинного перевода GMNT (Google’s Neural Machine Translation), которая основана на принципах глубинного обучения. По формальным оценкам и по мнению опрошенных добровольцев, точность перевода системой существенно выше, чем у существующих аналогов, хотя и не достигает пока точности живых переводчиков.

Точный машинный перевод с одного языка на другой является одной из классических задач в области искусственного интеллекта. Пока существующие системы не способны конкурировать с живыми переводчиками, однако быстро их догоняют. За последние годы точность перевода существенно выросла за счет применения продвинутых методов машинного обучения, развития параллельного вычисления на графических процессорах и появления большого количества баз данных с текстами на разных языках, которые могут служить в качестве обучающей выборки.

Популярные системы машинного перевода можно грубо разделить на традиционные, основанные на переводе отдельных фраз, и на более новые, основанные на нейронных сетях, учитывающих не только типичное значение фразы, но и ее контекст. Нейронные сети чаще всего относятся к классу рекуррентных, их основным отличием является то, что их ответ зависит не только от поступающих на вход данных, но и от предыдущего состояния сети. Это позволяет системам «помнить» о том, что они «видели» раньше, и учитывать это при выборе того или иного ответа. При этом программисты не обязаны заранее указывать или даже знать правила сочетаемости слов друг с другом, этому нейросеть учится самостоятельно на базе готовых текстов.

Новая система пока натренирована всего на нескольких языковых парах: английском и китайском, английском и французском, английском и испанском. Наилучшие результаты по сравнению с предыдущими системами самого Google показал последняя пара. Другие пары дали сравнимые результаты, однако в каждом из них «человеческие» переводы пока все-таки немного точнее, чем нейросетевые, сообщает N+1




29/09/16    Çap et