Micro-supercapacitors store energy directly inside a chip
Researchers at Drexel and the Paul Sabatier universities have managed to embed mini supercapacitors directly inside a microchip to enable electronics that are even smaller, last longer, and have more power to feed on.
The study was led by Yury Gogotsi and Patrice Simon and is the culmination of a more than five-year effort in which the scientists, after developing their tiny energy storage devices, have now managed to fit them inside silicon chips using methods that they say can easily integrate with existing chip manufacturing techniques.
"We set a lofty goal of not just making an energy storage device as small as a microchip," said Simon, "but actually making an energy storage device that is part of the microchip and to do it in a way that is easily integrated into current silicon chip manufacturing processes."
The scientists opted to store on-chip energy on micro-supercapacitors rather than miniature batteries. Current supercapacitors store less than a tenth the energy per unit volume of lithium-ion batteries, but they provide higher power outputs and are much more durable. For most applications, the team's vision is not to replace batteries with supercapacitors altogether, but rather to combine the two to get the best out of both worlds.
The tiny supercapacitors are made from thin, porous carbon films deposited directly on top of a silicon wafer, with current collectors made of titanium carbide (TiC). Characteristics like resistivity, thickness and mechanical stress of the carbon film can be tweaked by changing manufacturing parameters to fit specific applications and chip designs.
According to the researchers, the result is much more promising for a wide range of applications than the more common route of focusing on micro-batteries.
"Going down to the micro-scale, you need high power in smartphones and other electronic devices, and micro-batteries suffer to meet this power demand," said Simon. Our micro-supercapacitors can do it. Moreover, now that we developed a fabrication process that can be integrated on a chip, compatible with the processes of the semiconductor industry, it becomes easy to place micro-supercapacitors in electronic devices, making the power source more compact – or, you can put more in the same volume."
MTCHT
ICT
TECHNOLOGICAL INNOVATIONS
POST
ABOUT US
NEWS
INTERESTING
INTERVIEW
ANALYSIS
ONLAIN LESSONS