12px13px15px17px
Date:08/10/18

Researchers created ‘quantum artificial life’ for the first time

For the first time, an international team of researchers has used a quantum computer to create artificial life—a simulation of living organisms that scientists can use to understand life at the level of whole populations all the way down to cellular interactions.

With the quantum computer, individual living organisms represented at a microscopic level with superconducting qubits were made to “mate,” interact with their environment, and “die” to model some of the major factors that influence evolution.

The new research, published in Scientific Reports on Thursday, is a breakthrough that may eventually help answer the question of whether the origin of life can be explained by quantum mechanics, a theory of physics that describes the universe in terms of the interactions between subatomic particles.

Modeling quantum artificial life is a new approach to one of the most vexing questions in science: How does life emerge from inert matter, such as the “primordial soup” of organic molecules that once existed on Earth?

Erwin Schrödinger first proposed that the answer might lie in the quantum realm in 1944 in his seminal book on the topic, What is Life?. But progress has been delayed by difficulties in creating the powerful quantum computers needed to power the simulations that can answer this question.

Unlike the normal, “classical” computers you’re using to read this article, which only process information in binary bits—units of information whose value can either be a one or a zero—quantum computers make use of qubits, whose information value can be a combination of both one and zero. This property, known as superposition, means that large-scale quantum computers will have vastly more information-processing power than classical computers.

The aim of the research team, led by physicists Enrique Solano and from Basque Foundation for Science, was to create a computer model that replicates the processes of Darwinian evolution on a quantum computer. To do this the researchers used a five qubit quantum processor developed by IBM that is accessible through the cloud.

This quantum algorithm simulated major biological processes such as self-replication, mutation, interaction between individuals, and death at the level of qubits. The end result was an accurate simulation of the evolutionary process that play out at the microscopic level.

“Life is a complex macroscopic feature emerging from inanimate matter, while quantum information is a feature of qubits—microscopic isolated objects happening in the universe of the very small,” Solano told me in an email. “Our research brought these amazingly sophisticated events called ‘life’ to the realm of the atomic and microscopic world… and it worked.”

Individuals were represented in the model using two qubits. One qubit represented the individual’s genotype, the genetic code behind a certain trait, and the other its phenotype, or the physical expression of that trait.

To model self-replication, the algorithm copied the expectation value (the average of the probabilities of all possible measurements) of the genotype to a new qubit through entanglement, a process that links qubits so that information is instantaneously exchanged between them. To account for mutations, the researchers encoded random qubit rotations into the algorithm that were applied to the genotype qubits.

The algorithm then modeled the interaction between the individual and its environment, which represented aging and eventually death. This was done by taking the new genotype from the self-replicating action in the previous step and transferring it to another qubit via entanglement. The new qubit represented the individual’s phenotype. The lifetime of the individual—that is, how long it takes the information to degrade or dissipate through interaction with the environment—depends on the information coded in this phenotype.





Views: 52

©ictnews.az. All rights reserved.

Facebook Google Favorites.Live BobrDobr Delicious Twitter Propeller Diigo Yahoo Memori MoeMesto






24 October 2018

23 10 2018

23/10/18
WhatsApp working on Face ID and Touch ID support for iOS app

WhatsApp is reportedly working on a new security feature for its iOS app. iPhone users have never been able

23/10/18
HTC Releases First Blockchain-Powered Smartphone – Exodus 1

HTC launched a new blockchain-powered smartphone, “EXODUS 1,” Tuesday morning. The phone is the first 

23/10/18
AzInTelecom holds hackathon

AzInTelecom LLC under the Ministry of Transport, Communications and High Technologies will hold 

23/10/18
Windows 10 October 2018 Update apparently hit by another bug that could lose your files

It appears there’s some more bad news for the Windows 10 October 2018 Update, with some apparent further 

23/10/18
Samsung Flash laptop launched with 13.3-inch display, retro style keyboard

Samsung has launched a new laptop – Flash – which is both gorgeous and powerful. Launched in its home country

23/10/18
Podoon smart pillow can adjust to the person’s posture

Podoon smart pillow is able to automatically adjust to the person’s posture so that he sleeps soundly 

23/10/18
China to build world’s largest supercollider

Chinese scientists plan to build the world's most powerful electron collider by 2030, a project that will cost 35 billion

23/10/18
QuTech researchers put forward a roadmap for quantum internet development

A quantum internet may very well be the first quantum information technology to become reality. Researchers 

23/10/18
82% of American teens own an Apple iPhone

Teens in the United States still love the iPhone, with a whopping 82% of teens in a recent study saying they owned